FIFTH EDITION DIVERS LIST
/ GINO ALMONDO
/ LORENZO ARGANTE
/ ANTONINO BARBERA
/ ANDREA BECCARIS
/ SINJA BURI
/ GIUSEPPE DI BERNARDO
/ ANDREA FLORI
/ MATTEO GIARETTI
/ GIUSEPPE GULLO
/ SOREN HEITMANN
/ TERESA KUBACKA
/ GIACOMO LEONZI
/ MARTIN MÜLLER
/ MAURIZIO MATTIOLI
/ ADRIANO PAGANO
/ DAVIDE PASSARETTI
/ RICCARDO RINALDI
/ LUCA RUZZOLA
/ MASSIMO SANTI
/ LUCA TABONE
/ VALENTINA TORTOLINI
/ ENRICO UBALDI
TEACHERS & SPEAKERS
# Development
Alex Comunian – top-ix.org
Alessandro Molina – axant.it
Niccolò Bidotti – agilelab.it
Valerio Maggio – fbk.eu
Neal Richardson – crunch.io
# Visualization
Fabio Franchino – todo.to.it
Massimo Candela – ripe.net
Jan Willem Tulp – tulpinteractive.com
# Data Science
Andrè Panisson, Laetitia Gauvin e Michele Tizzoni – isi.it
Bruno Gonçalves – bgoncalves.com
Johan Bollen – informatics.indiana.edu
Vittorio DiTomaso – celi.it
Other aspects of BIG DATA
[#Legal] Marco Ciurcina – studiolegale.it
[#Business] Enrico Ferro – enricoferro.blogspot.it
[#Linked Data] Federico Morando – synapta.it
[#Data Quality] Antonio Vetrò – nexa.polito.it
SPONSORS
DATA-FREE SPONSORS
BasicNet
basicnet.com
Reale Group
realegroup.eu
DATA SPONSORS
Dimar
dimar.it
CSI Piemonte
csipiemonte.it
BIG DATA@PoliTO
bigdata.polito.it
SmartDataNet
smartdatanet.it
Team Group: A. Beccaris, T. Kubacka, M. Müller, D. Passaretti, M. Santi
Team Composition: Developers: x2 | Data Scientists: x3
Dataset by: Dimar
The goal was to explore the phenomena of “gaps on the shelves” meaning that a specific product is not available for the customers looking for it. Particularly the two aspects most relevant for the Data Sponsor are: (1) the analysis of the economic impact (in term of missing revenue); (2) the connection between “gaps” and marketing promotions.
Team Group: L. Argante, S. Buri, S. Heitmann, R. Rinaldi, V. Tortolini
Team Composition: DataScientists: x2 | Developers: x1 | Statistist: X1 | Economist: X1
Dataset by: CSI – SmartDataNet
The focus of the project was: (1) to explore the demand for bike sharing in Turin based on open data available on SmartDataNet platform; (2) to identify factors that strongly affect bike-sharing usage; (3) to identify suitable locations for new bike stations based on high use expectations.
Team Group: A. Barbera, G. Di Bernardo, A. Flori, Giuseppe Gullo, G. Leonzi, E. Ubaldi
Team Composition: DataScientists: x3 | Developers: x2 | Statistist: x1
Dataset by: Politecnico di Torino
The project goals were: (1) to develop a system which, starting from data and external information, shows a dashboard offering descriptive statistics for each city; (2) to collect and visualize information about the car sharing service; (3) to analysis the car sharing impact in the parking spaces allocation and city economics.